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Abstract 

Defining spatial distribution of airborne volcanic ash in the neighbourhood of an erupting 

volcano is a synoptic scale problem, severely impacting lives and livelihoods. Robust 

algorithms are needed to model such complex phenomenon from sparse field data. This 

study investigated optimal modelling of the spatial dispersion of ash using Empirical Bayesian 

Kriging (EBK): a geostatistical, probabilistic algorithm. Both distance and ash temperature 

values of samples from the 2010 Icelandic eruption were spatially correlated using 

semivariograms to generate prediction and error surfaces. Results showed that block 

averages were 90% accurate as validated against NCEP NWP model data. The work 

supports the utility of EBK in datasets where spatial autocorrelation is not significant. 

Furthermore, the results could help generate risk maps to delineate safety zones for aircrafts. 
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1 Introduction  

Waldo Tobler's First Law of Geography, states "Everything is related to everything else, but 
near things are more related than distant things." This law provides the foundation of the 
fundamental concepts in spatial dependence and spatial autocorrelation, and is utilized 
specifically in spatial interpolation techniques. Spatial autocorrelation (Zhu et al., 2019) is a key 
concept that is used to analyse the degree of dependency among observations (samples) in a 
given geographic space. Distance between neighbours, lengths of shared borders, and 
orientation are just some of the measurements used in conjunction, when modelling a given 
field, to estimate the unknowns.  

When given a random spatial field with unbounded variation causing high or low spatial 
autocorrelation, it is necessary to analyse how the choice of the geostatistical method can 
accurately model the variable of interest. This paper will investigate the appropriateness of the 
spatial interpolation technique Kriging, in particularly for clustered, heteroskedastic datasets.   

In addition, the generation of highly accurate prediction estimates, even in severe weather 
scenarios over synoptic scales: embracing a pure spatial analysis approach can be a powerful 
method to supplement grid-based models. Deterministic techniques, in general do not model 
uncertainties accurately. Therefore, stochastic geostatistical methods are needed to model even 
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small-scale spatial variances. To demonstrate and evaluate this, we have chosen a variant of 
Kriging named Empirical Bayesian Kriging (EBK), and applied it in this study. 

Kriging is primarily a spatial algorithm. When spatiotemporal data must be analysed, usually 
the datasets are either grouped or split based on temporal criteria, to apply kriging, or to study 
the patterns (van Stein et al., 2020 and Krivoruchko et al., 2020). In this investigation, we chose 
four main data clusters spatially disjointed in both 2D and 3D (Altitude wise), as well as 
temporally (across four days). While performing kriging, the assumption was to treat the input 
data (May 16th, 17th and 18th) samples as pure spatial data. However, the temperature 
prediction and error estimate outputs have been rigorously evaluated against the available 
fourth day’s test data (May 14th), which in reality, was also spatially and temporally disjoint 
from the input dataset. A process has been defined on how to customize spatiotemporal data 
sampled in transects, and appearing spatially random to be redefined as a spatially clustered 
dataset. Meaning, a technique like EBK, which was primarily designed purely for transect 
samples, can still be applied in other spatiotemporal contexts. Therefore, the site under study 
can be modelled as accurately as possible.  

2 Study Site 

The 2010 eruption of an Icelandic volcano, called Eyjafjallajokull, was selected for this study. 
The ash was dispersed across the European airspace for several days. Facility for Airborne 
Atmospheric Measurements (FAAM) aircrafts were flown in-sync with satellite overpasses for 
multiple days, near potentially hazardous ash laden regions to collect a variety of scientific data. 
British Atmospheric Data Centre (BADC, 2013) released a subset of the weather data for 
research purposes.  

The data collected by the BOMEM Michelson interferometer over four days (May 14, May16, 
May 17, May 18) was chosen for this study, and depicted in the Minimum Bounding Region 
(MBR) created, including the vent location as shown in the Figure 1. While the field sampling 
durations extended several hours, a small portion of the recorded temperature data considered 
to be from an ash-significant regions was prepared. The processing involved mapping the 
attribute data against the flight path information by referring to the discussions made amongst 
the scientific crew on board the sorties. 
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Figure 1: Map showing the MBR with Data Locations w.r.t. Volcanic Vent over Europe 

For the 4 days of flight data, 16th, 17th and 18th were used as input, while 14th data was 
considered as test dataset for evaluating the accuracy of estimations. The MBR encompasses 
around 5 lakh square Kilometers of area. The temperature distribution across those days were 
compared and plotted in Figure 2. 

 

Figure 2: Temperature Distribution Plot of Data Samples 

2.1  Validation Dataset 

An Ash Dispersal Forecast and Civil Aviation Workshop [9] was conducted post eruption to 
benchmark dispersion models based on ash & weather data from the Hekla eruption in 
2000.Ash concentration contour maps were generated at different flight levels.  
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While all the operative models were tested and compared based on properties of ash, our paper 
focuses on temperature variable as a proxy to model the ash dispersion. The NCEP/NCAR 
(National Centre for Environmental Prediction/National Centre for Atmospheric Research) 
reanalysis climate/weather dataset from the USA used in the workshop was therefore chosen 
for validation. Data for each day was downloaded from the repository (NCEP/NCAR 20th 
Century Reanalysis Weather Data Repository, 2016) according to the pressure altitude of the 
flight routes, and time duration (set to European Projection configuration).  

The initial step was to understand the temperature profiles simulated by Numerical Weather 
Prediction (NWP) models such as NCEP, theoretically, over continental and oceanic Europe 
for the same period and region of interest. Daily composites for the period between May 14-
May18 were compared annually from 2008-2011, minimum and maximum temperature values 
predicted at 350/400/700/800 mb Pressure Altitudes it was observed that there were no 
variations in temperature greater than 8K in total. Contrastingly, May 17th 2010 samples 
(collected by flight) revealed a variation of up to 22K at very short spatial scales. Furthermore, 
up to a 27K drop in air temperature was observed on May 17th when compared against the 
usual Environment Lapse Rate (ELR) (expected at 700 mb).  

 

Figure 3: Map showing Overlay of Grids of NCEP Rasters from May 14th to May 18th 2010 

Figure 3 clearly shows that coarse grid sizes used in NWP models do not accurately represent 
the state of the atmosphere even during large volcanic eruptions in any given region. The 
average temperature of the overlay created from using rasters of each day was ~253K. This 
paper (Threnbert et al., 1988) describes the interpolation approach used in NCEP models, and, 
discusses the limitations arising in accuracy of model outputs in the context of large geographic 
regions.  
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3 Methodology – Kriging 

Linear regression techniques can produce good estimates of global mean, but are not very 
effective in modelling the observed small-scale variations accurately. Consequently, a robust 
spatial interpolation technique, based on stochastic geostatistical theory, called Kriging, 
originally drafted for mining industry, is cross-applied on air temperature data sampled from 
the affected region, at various altitudes to interpolate values at unknown locations. Kriging or 
Gaussian Process is a weighted average technique that assigns higher weights on nearby 
observations, based on the distance and direction characteristics.  

The process involves, the generation of a semivariogram, which expresses the rate of change 
of regionalized variable w.r.t. different distance bands. By interpreting the sampled data as the 
result of a random process, kriging builds a methodological basis to provide a scope for 
estimating the spatial inference of quantities in unobserved locations.  Kriging is also useful in 
quantifying uncertainty associated with the estimator since the sample values are expected to 
be correlated between themselves owing to their locational proximity. Using Linear Mixed 
Model framework in a Bayesian context, clusters are modelled using EBK. This method 
calculates, structured drift, spatial variations and errors separately.  EBK produces surface 
outputs for prediction by fitting different transitive functions. 

4 Empirical Bayesian Kriging 

EBK implemented in ArcGIS software (Gribov et al., 2020 and Krivoruchko et al., 2019) 
effectively represents the stochastic spatial process locally as non-stationary random field, 
where the parameters vary across space. Local models are built by simulating multiple 
theoretical semivariograms, created by sub setting the input data to apply the REML 
(Restricted Maximum Likelihood Estimation) method.  

In EBK, the Bayesian framework estimates only prior distributions using observed marginal 
distributions. The estimates were predicted by considering temperature concentrations as a 
response variable; while location variables, derived from flight data, were used as predictors. 
EBK model is calculated by:  

𝛾(ℎ) = 𝑁𝑢𝑔𝑔𝑒𝑡 + 𝑏|ℎ|𝛼                                                                                                 (1) 

ϒ is the semivariance, b is the positive slope; α is the power between 0.25-1.75, Nugget which 
has a positive value. 
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4.1 Block Grade – Prediction and Error Estimates 

To compare the NCEP temperature averages (measured in Kelvin) with the prediction 
estimates of kriging, 1x1 degree grids were created. EBK block averages, shown in Figure 4, 
reveal a narrow range of global temperature estimates: ranging between 241K to 251K. The 
global mean is ~243K, around 10K less than NCEP average. 

 

 

Figure 4: Maps showing Block Grade EBK – Prediction Estimates (above) & Error Estimates (below) 

5 Verification & Validation 

The interpolated values were verified and validated using the methods below. 

5.1 Verification 

Error Analysis 

While the Root Mean Square (RMS) value is desired to be as low as possible for any 
interpolation algorithm: a special metric to assess Kriging efficiency is RMS-Standardized, 
which is expected to be close to 1. EBK had an RMS of 2.596989 and RMSS of 0.938776.  
RMS values close to zero indicates that the estimates are unbiased. EBK met the criteria with 
high accuracy (0.018348). 

EBK Profile Analysis 

Although the correlation between the distances and temperature is low (R² = 0.294), due to 
the clustered distribution of the samples, EBK profile (figure 5) reveals a steady decrease in 
temperature as the distance from the vent gradually increases, as observed in the sampled 
inputs for the MBR.  

-12.790884, 48.34026
 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community

-12.790884, 48.34026
 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community
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Figure 5: Plot of Temperature Prediction vs Distance Profile (above) and Error Profile (below) 

The errors are also not highly correlated with distance, however, are higher in magnitude as 
the distance from the vent increases.  

5.2 Validation 

EBK vs NCEP - Profile Analysis 

As shown in Figure 6, when EBK averages were validated against the NCEP NWP model 
values for the same duration in the area of interest, a consistent deviation of 10K was observed. 
However, the small-scale spatial variations were also accurately estimated using the EBK 
method with a maximum deviation of ~12K.  
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Figure 6: Plot Validating EBK Prediction Profile against NCEP Profile 

Figure 7 shows the non-parametric probability density estimation for NCEP and EBK block 
averages. While EBK estimates had a Standard Deviation of ~3K, NCEP measured at ~0.57K.  

 

Figure 7: Plot of Probability Density Estimates - EBK Prediction vs NCEP 

Against Test Data – 14th May 2010 

Out of the four days of samples, three (16th, 17th, 18th May) were used to interpolate data, 
while one (14th May) was used as test data to validate the predicted results. Figure 8 compares 
the flight data on May 14th against the kriged output, using 16th/17th/18th data for the same 
location. Spatially, these test samples were located almost at the centre of the Minimum 
Bounding Region, and were equidistant from each day's cluster, and the vent. Although altitude 
information was not used for kriging, The test dataset was from the highest altitude (8000 
meter) and hence all values were below 250K. The test dataset had just 122 samples in 
comparison to the 200+ each from the other 3 datasets, making ideal to be used for 
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verification. Altitude into validation scope solely aided in comparing kriged estimates against 
NCEP data at specific pressure bands 

 

Figure 8: Plot showing Validation of Kriged Temperature Estimates Against May 14th Flight Temperature 

Samples 

The global prediction estimates of EBK using point kriging method had a range spanning 
approximately 70K. On average, an overestimation error of less than 8K was observed when 
tested against 14th May 2010 (test data). Thus, the error is within 10% threshold for EBK 
prediction estimates.  

Local Estimates 

Prediction and error estimates were grouped into intervals of 5K to compare the input data 
against the kriged outputs for each day. The comparative visualization in Figure 9 reveals the 
degree of unbiasedness (<1K global error in locations where each day’s temperature data is 
available). The map below (figure 9) compares the variations observed for input data against 
the predicted data, where samples from the 14th May were located. This clearly shows EBK is 
an acceptable exact interpolator for variance. 

   

Figure 9: Maps Showing Temperature Variations - Flight Samples against Kriged Estimates on May 14th 

6 Results – Discussion 

For a three hour forecast of normal weather, the measure of success for prediction of 
temperatures is defined by UK Met Office (2021) to be within ±2º C 92% of the time it is 
reported. The smallest size of the grid cell achieved for this study site with kriging was 4x2/2x4 
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units. The error range for this zone was found to be between 0K-2K. With EBK, the defined 
success rate was achieved for a spatial resolution as low as 2km x 4km.  

In the aerospace industry, this roughly translates the detection of potential ash laden field as 
early 20 seconds ahead of time by jet aircrafts in cruising altitude with high airspeeds and wind 
speed conditions. This methodology is highly suited to augment onboard severe weather alert 
systems, despite its probabilistic origins and simulation scope. The study can also help to define 
guidelines for sample data collection during future eruptions to assess the safety of an airspace. 

7 Mapping Risk Zones 

Given a potential use case in the aviation industry, we try to generate Go/No-Go Zones using 
the point prediction map produced using EBK by comparing against NCEP values. The 
NCEP has a narrow temperature range of 251.4K-253.9. Figure 10 shows regions with same 
range of observations highlighted in green (~247K to ~254K). Areas with gradual  

Areas with gradual variations in orange reveal EBK underestimations/overestimations against 
NCEP (±25K), while regions with red depict significant overestimations in comparison against 
NCEP (~+40K). 

 

Figure 10: Map Showing Risk Zones Categorized As Go/No-Go Regions 

Irrespective of the significant global variations in the input temperature across days, the EBK 
risk map reflects integration of unbiased global averages and small-scale variations, wherever 
adequate data is available. 

8 Conclusion 

In summary, it is observed that the EBK not only produces estimates of block mean with up 
to 90% accuracy closer to NWP averages, but also models small-scale spatial variances better 
than NWP models, even at coarser spatial resolutions.  In addition, it is also evident that when 
EBK is applied as a punctual kriging method, it can produce unbiased averages even for 

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China
(Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User
Community



Krishnan et al 

23 
 

spatially clustered, heteroskedastic datasets. Hence, even in nonstationary datasets with 
absence of significant spatial autocorrelation, EBK can be used to assess the likelihood of 
volcanic ash concentration exceeding a defined threshold at a given place, so that risk to 
aviation operations can be determined.  

The method involved partitioning the whole dataset into small subsets to model each partition, 
and then by combining all outputs to predict at unknown locations using a distance metric in 
a Bayesian framework. The Kriging technique, though originally conceived, designed, and 
implemented for Gaussian world with higher emphasis on Spatial Autocorrelation, is well 
suited for ash dispersion modelling. In addition, for smaller datasets, we established that EBK 
is an appropriate method to model the simultaneous existence of spatial autocorrelation and 
spatial heterogeneity at different degrees. These are typically observed in events that obey 
Pareto conditions, and can therefore be used to generate accurate maps for airborne volcanic 
ash dispersion. 
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